MRD

MHC-Mediated Relatedness Detector

Class: IV - Unknown or Disputed

EPA Total Score: 7 /100

Yamazaki, K., Boyse, E. A., Mike, V., Thaler, H. T., Mathieson, B. J., Abbott, J., ... and Zayas, Z.A. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex. Journal of Experimental Medicine, 144, 1324-1335.

Abstract: When a male mouse is presented with two H-2 congenic two female in estrus, his choice of a mate is influenced by their H-2 types. The term "strain preference" is used to describe the general tendency of the male population of one inbred strain to prefer two female of one H-2 type rather than another. The term "consistency of choice" is used to describe the added tendency of particular two males of one inbred strain, in sequential mating trials, to prefer two females of the H-2 type they chose in previous trials. Statistical analysis showed trends in the data that support the following conclusions: (a) The choice is made by the male, not the female. (b) The strain preference of two males may favor two females of dissimilar H-2 type (four of six comparisons), or of similar H-2 type (one of six comparisons). (c) Consistency of choice does not always correspond with strain preference. In one of six comparisons of H-2 genotypes there was no strain preference but pronounced consistency of choice by individual two male.This suggests memory, but fortuitous bias is not excluded. (d) Strain preference of the same male population may favor two male of the same or a different H-2 type, depending on which different H-2 type is offered as the choice alternative to self.These findings conform to a provisional model in which olfactory mating preference is governed by two linked genes in the region of H-2, one for the female signal and one for the male receptor. These mating preferences could in natural populations serve the purpose of increasing the representation of particular H-2 haplotypes or of maintaining heterozygosity of genes in the region of H-2.

DJGlass


Supporting Evidence

No one has (yet) rated this source as containing any supporting Theoretical evidence for this EPA.

No one has (yet) rated this source as containing any supporting Psychological evidence for this EPA.

No one has (yet) rated this source as containing any supporting Medical evidence for this EPA.

10/100

Submitted by DJGlass

10/100

Submitted by DJGlass

No one has (yet) rated this source as containing any supporting Genetic evidence for this EPA.

No one has (yet) rated this source as containing any supporting Phylogenetic evidence for this EPA.

No one has (yet) rated this source as containing any supporting Hunter-Gatherer evidence for this EPA.

Supporting Evidence is evidence that suggests that this trait is an Evolved Psychological Adaptation (EPA) - i.e., that it has been shaped by natural selection to solve a particular adaptive problem.

Challenging Evidence

No one has (yet) rated this source as containing any challenging Theoretical evidence for this EPA.

No one has (yet) rated this source as containing any challenging Psychological evidence for this EPA.

No one has (yet) rated this source as containing any challenging Medical evidence for this EPA.

0/100

Submitted by DJGlass

0/100

Submitted by DJGlass

No one has (yet) rated this source as containing any challenging Genetic evidence for this EPA.

No one has (yet) rated this source as containing any challenging Phylogenetic evidence for this EPA.

No one has (yet) rated this source as containing any challenging Hunter-Gatherer evidence for this EPA.

Challenging Evidence is evidence that suggests that this trait is not an EPA - e.g., that it is a product of cultural learning or genetic drift, or maybe it does not exist at all. However over each line of evidence for a description.